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Abstract. A class of useful difference approximations to the full nonlinear 
Navier-Stokes equations is analyzed; the convergence of these approximations to 
the solutions of the corresponding differential equations is established and the rate 
of convergence is estimated. M 

Introduction. The Navier-Stokes equations, describing the motion of a viscous 
incompressible fluid, can be written in the dimensionless form 

(1) atvi + aip = -vjjvi + Vvi + Ei, (V 2 Ej) 

(2) divv = O 

where the vector v, with components vi, i = 1, 2, 3, is the velocity, p is the pressure, 
E is the external force, dat denotes differentiation with respect to the time t and 0 
denotes differentiation with respect to the space variable xi, i = 1, 2, 3. Vector 
quantities are denoted by bold-face characters and the summation convention 
applies to the index j. 

When a solution of these equations is required in some bounded domain ? with 
boundary dg, use is generally made of an appropriate difference approximation. A 
new class of such approximations was introduced and utilized in [1] and [2]; it is 
the purpose of this paper to establish the convergence of the solutions of such 
approximations to the solutions of Eqs. (1) and (2) in U. 

To our knowledge, the first convergence proof for a difference approximation to 
the complete system (1) and (2) was given by Krzywicki and Ladyzhenskaya 
(see e.g. [3]). Their proof gives both more and less than the numerical analyst re- 
quires. It gives more because it actually establishes the existence of a certain weak 
solution of the equations. It gives less because it provides no estimate of the error 
and because it applies to a scheme which is not readily applied in practical calcula- 
tion. Proofs related to that of Krzywicki and Ladyzhenskaya have been given by 
Temam [4], [5], for schemes which are as yet untested in practice. 

In the present paper we shall adopt a different point of view. We shall assume 
that the differential equations have a solution with a certain number of continuous 
derivatives. Armed with this knowledge, we shall study difference schemes which 
are not merely usable, but even efficient. The methods analyzed are based on the 
following observations: Equation (1) can be written in the form 

(1') dtv + grad p = Tv + E 
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where the vector TFv, with components -vj9,vi + V2vi, is a functional of v; Eq. (2) 
can be differentiated to yield 

(2') div (,a v) = 0 . 

(1') can therefore be written in the form 

(3) atv = iP(Tv + E) 

where (V is an orthogonal projection operator which projects vectors in L2(Q) onto 
the subspace of vectors with zero divergence in Q and satisfying an appropriate 
boundary condition on ag (see e.g. [6], [7]). Usually the appropriate boundary con- 
dition is that the normal component of v vanishes. On the basis of these remarks the 
following procedure is followed: The time t is discretized; at every time level iv, 
then (9P(Tv + E) are evaluated; this yields an approximation to a tv which is used 
to obtain v at the next time level. 

As will become apparent in the course of this work, the author has not obtained 
results as general as he may have wished. A convergence proof in both the maximum 
and L2 norms, with a suitable error estimate, has been obtained only for the special 
problems in which the boundary conditions are replaced by periodicity conditions. 
This proof is presented in the next two sections; first the discrete analogues of the 
operators grad, div and (V are described and studied; these operators are then used 
to present and analyze a difference scheme for the periodic initial value problem. 
The mixed initial value-boundary value problem is briefly discussed in a final section. 

Preliminaries; The Operators D, G and P. We assume that Eqs. (1) and (2) 
have a solution v, p, periodic in all spatial directions; without loss of generality in 
the proofs the periods can be taken equal to 1. Let 1 be the number of space di- 
mensions; ? is then the cube 0 < xi < 1, i = 1, * * *, 1. We cover Q by a rectangular 
grid and assume that the mesh-widths in all directions are equal to the same small 
number h. The set of all mesh-nodes is denoted by Qh; Qh0 is the set of nodes in the 
interior of ? and agh is the set of nodes on the boundary of U. Qh0 + 0gh = Oh. 

N = h-' + 1 is the number of mesh-points in each space direction. 
Let f be a scalar function and let u be a vector function with components u , 

defined at the points of Oh. Let z = [q, r] (if 1 = 2) or z = [q, r, s] (if 1 = 3) be a 
point in Qh with coordinates qh, rh (qh, rh, sh if 1 = 3). The values, of f, ui at z are 
denoted byfz, ui(z) orfq,r, Ui(q,r) (fq,r,s, Ui(qrs8) if 1 = 3). The periodicity conditions 
become fq+N-1,r = fq,r etc. 

The inner product is defined for scalar functions f, g, by 

(f, g) = 0 fzgqh' + - E fzgz 
ZEGh 2 zdah 

and for vectors u, v by 

(u-v)= 2(ui, vi) 

where only half the vertices are counted in the boundary sums. As usual, we set 

jjfjj = ((f, f))112 , IIuI = ((u, U))1/2 
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The shift operators SIi are defined by 

Sjlfqr = fqil,r 

Sk2fq,r = fq, r?a 

with similar definitions in the three-dimensional case. The difference operators 
D+i, Di, Doi are defined by 

D+i= (S+i - I)/h, 

D-i= (I -Si)lh, 

Doi = (D+i + D-i)/2 = (S+i -Si)12h 

where I is the identity. D+i, D-i and Doi are respectively the forward, backward 
and centered difference operators in the ith direction. 

Let D and G denote respectively the discrete approximations to the operators 
div and grad. Both D and G employ centered differences, i.e. for a vector u on gh we 
set Du Do,,uj and for a scalar function 4) we set Gi5 =Doiq4. With these defini- 
tions, the following identities can be readily verified: 

(4) (Du, e) = 0 

where e -1 at all points of Oh, and 

(5) (Du, 4) + (u, GO) = 0 

for all u and 4). These are the analogues of the identities 

J div u dx = 0 

and 

1+ div udx + u grad q)dx div q)udx =0 

which hold for smooth periodic functions u and 4) on U. For u, 4) periodic and three 
times continuously differentiable, we have 

jfGX5 - grad e)fl = 0(h2), [Du - divull = 0(h2). 

We shall now discuss some consequences of our systematic use of centered differ- 
ences. Let 'I be a function on h, let z-, z+ be two points a distance 2h (modulo 1) 
apart, and let zo be the point on the line joining z_ and z+ and at a distance h from 
each. One of the components of G4V at zo is a linear combination of 4/i, and 4V,; we 
describe this situation by saying the z+ and z_ are G-connected. We say that points 
z, z' belong to the same G-chain if there exist points zi, Z2, *. zn such that any two 
successive points in the sequence 

Z2 Zl Z22 ...* Zn, Z 

are G-connected. Clearly Qh is the union of some number L of disjoint G-chains. If 
N is even L = 1; if N is odd L = 21. (Had we allowed the numbers of mesh-points in 
the several space directions to differ from each other, we would have found that 
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L = 2i, i between 0 and 1.) The following facts can now be verified: (i) when G4 is 
given, 4 is determined only up to L arbitrary constants; and (ii) the sum on the 
left-hand side of the identity (4) can be separated into L partial sums, each vanish- 
ing separately. We refrain from assuming that N is even and L = 1 so that our dis- 
cussion remain valid for the nonperiodic case where L $ 1 for all N; see the last 
section of this paper. 

We are now ready to prove the following discrete analogue of a well-known 
decomposition theorem: 

THEOREM 1. Let u be a vector on ?h satisfying the periodicity conditions; then there 
exist a unique periodic vector uD and a periodic function 4 such that 

(6) DuD = 0 

(7) U = UD+ Go 
at all points of Oh, with 

(8) (UD, GO) = 0. 

Proof. If uD satisfying Eq. (6) exists, then Eq. (8) is clearly satisfied because 
(D, G4) = -(DuD, 4) = 0. 

We already know that 4 in Eq. (7) can be determined only up to L arbitrary 
constants. To lift this indeterminacy we can impose L additional conditions; for 
example, we can number the G-chains and require that 

(9) Adz 0, i-1,y *,L, 

where EI denotes summation over the ith G-chain. 
The theorem is proved by verification of the Fredholm alternative. Let qo be 

the number of points in gho and qa the number of points on c~h (qo + qa = N1). 
There are qo + qa/2 values of 4 and l(qo + qa/2) components of uD to determine. 
Equation (6) represents (qo + qa/2) equations related by the L identities (4), i.e. 
qo + qo/2 - L independent equations. Equation (7) represents l(qo + qa/2) rela- 
tions; together with Eqs. (9) the number of equations equals the number of un- 
knowns. 

Squaring (7) and using (8) we obtain 

(10) jIul12 = IIUDI12 + JIGf112 

Therefore, if U = 0, then uD = 0, G4 = 0 and 4 = 0; this proves the theorem. 
Let H be the space of periodic vectors defined on 9h, let HD be the subspace of 

periodic vectors v such that Dv = 0, and let HG be the subspace of vectors of the 
form G4, 4 periodic; Theorem 1 states that HG and HD are orthogonal to each other, 
and that H is their direct sum. Let P be the orthogonal projection projecting H on 
HD; (7) can be written in the form 

u Pu + Go. 
We obviously have for all u 

(11) jjPujj H jullff 
P is the discrete analogue of 6 (see Eq. (3)). Given u, it is a fairly simple matter to 
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evaluate Pu; efficient methods for so doing were described in [2]. For the sake of 
completeness, we exhibit a method for finding Pu which, albeit inefficient, has the 
merit of simplicity. Consider the iteration system 

w =u-Ga m 1, 

4 m+i=m0 -Dwm+l m > 1 > 

where wm, Om, m > 1, are periodic and 0 is a parameter. It is readily verified that for 
0 < 0 < h2/12, wm converges to Pu as m increases for all initial guesses cu1. 

To conclude this section, we prove a number of inequalities which will be needed 
in later sections. We start with a discrete analogue of the Poincare inequality. Con- 
sider the case 1 = 2. Let +i be a function defined on h, and let z = [p, q], z' = [p', q'] 
be two points on the ith U-chain; p' = p + 2mi, q' = q + 2m2. We have, 

mr-1 m2-1 

fp - Apq = E (i1/h)p+1+2kq 2h + E (G24')p',q+1+2k*2h- 
k=O k=O 

Therefore 

N-1 N-1 2 

4PT ', - p ,ql < 4 E ? Gi4lkqh + E |G2V|pA 
k=l k~l 

N-i N-1 

? 8 E ICGiakfh + E IG2l1t 'fkhJy 
k=l k~l 

where the relation (N - 1)h = 1 is used. We multiply both sides by h4 and sum over 
all [p, q] and [p', q'u in the ith G-chain, giving points on cgh the weight 2, and obtain 

>2 h2 E2 I/i),h2 2 + >h2 1E '/' q -2 >26P qh2 E tP'q'h2 
X i i i i i 

< 8 E h3llGIPf2 < 81Gip[2 

where Es denotes summation over the ith G-chain. 
Let Ni be the number of points in the ith G-chain. We have 

Ni ? (N - 1)2/L > 2N2/L. 

Therefore 

12 
= 2L 

and 
/ ~~~~2 

1 E k1VKh2 < 2(> .pq2 I + 8jG1IlP2. L Xi 

Summing over all G-chains we obtain 
/ \~~~2 

(12) 11piJ2_< 2L >2 (2pPqh2) + CiIIGi'11 2, 
G-chains i 

where Ci = 8L2. A similar inequality can be derived in the three-dimensional case, 
with Ci = 12L2. The inequality (12) can now be used to prove the following theorem: 
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THEOREM 2. Let u be a periodic vector defined on S?h. Then the following inequality 
holds 

(13) Jlu - Pull ? V/CJilDull 
where V\C, is a constant independent of u and h. 

Proof. By Theorem 1, u - Pu = Go is in HG. Let G4l' be an arbitrary unit vector 
in HG, (llGlll = 1). 4l is determined only up to L arbitrary constants which can be 
chosen so that 

E42 = 02 i= 12 ...,L. 

We have 

(GO, GA1) = (u - Pu, GO) = (u, GOl) =-(Du, ys). 
Hence, using (12), we obtain 

I(GO, GOt)l = l(Du, Vt)I ? IIDull 1 \I _ VCIIDu 

Since GAl is an arbitrary unit vector in HG, (13) follows. 

Solution of the Periodic Initial-Value Problem. In this section a scheme for 
finding periodic solutions of Eqs. (1) and (2) will be analyzed. The particular 
scheme discussed has been singled out because it resembles schemes the author has 
used in actual computation (see [2]); it will be evident that the analysis applies to 
wide classes of schemes. We shall again simplify notations by writing the equations 
for the two-dimensional case; the scheme as well as the proofs generalize to the 
three-dimensional case without further ado. 

Let u, with components us, be the computed velocity, let Xr be the computed 
pressure, and let k be the time step. We write 

= u(nk), T r (nk) , etc. 

At the time t = 0 a periodic velocity field u0 is assumed given. (More will be said 
later about the proper choice of u0.) Given un, un+l is evaluated in three fractional 
steps: 

(14a) u-n"3 = uin - kulnDolu in+l /3 + kD+iDi uiX+ 

(14b) u n+2/3 = U n+1/3-ku2nDO2u n+2/3 + kD+2Du+2 /3 

(14c) ufn+l = P(un+2/3 + kEn+1) 

with un+1/3, un+2/3 periodic. 
Equations (14a) and (14b) can be rewritten in the form 

(15a) (I - kQj (un))u+1 /3 = un 

(15b) (I - kQ2(Un))un+2/3 = n+1/3 

where Q1(un), Q2(un), are linear operators dependent on the parameters u'(.). 
Equation (14c) can be rewritten in the form 

(15c) uf+l + kG~rn+1 = u n+2/3 + kEn+l (DUn+1 = 
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which defines 7rn+l the computed pressure at the time (n + 1)k. (Un+2/l corresponds 
to uaux in the notations of [1] and [2].) It can be seen that the vector (un+213 -Un)/k 
approximates fu and that Eq. (14c) which is equivalent to 

( -+1 u-)/k = P{ (u"+2 -u")/k + E} 

is the discrete analogue of Eq. (3). 
The task now at hand is to prove that un+l/3, un+213, Un+l exist, i.e. that the 

operators (I - kQ (un)) are invertible when u0 is chosen appropriately, and that the 
vectors un converge to the solution v(nk) of Eqs. (1) and (2). We start by showing 
that Eqs. (14) are consistent with Eqs. (1) and (2); this is the content of the follow- 
ing lemma: 

LEMMA 1. Let k = 0(h2), and assume that Eqs. (1) and (2) have a periodic solution 
v, p, which has continuous derivatives up to order five in the interval 0 < t < T. Then 
there exist two times continuously differentiable vectors wn, wn+l/3, wn+2/l (O < nk < T) 
such that 

(16a) (I - kQ1(w*))w*n+3 = w + 0(k2) 

(16b) (I - kQ2 (w*) )wn+2/3 = w"/3 + 0 (k2) 

(16c) Wn+1= P(wn+2/3 + kEn+1) + 0(k2) 

with 

(17) livn - wIll = 0(k). 
Proof. We simply construct the required functions. We have 

1 2 
Dvn = divvn + EZ-e a3vn + 0 (h4). 

Therefore, putting 

(18) w V -- h = 1, * , 1 (no summation over) 

we obtain Dwn = 0(h4) = 0(k2). Equation (17) is clearly satisfied, and by Theorem 2 

(19) 1w'- Pwtnjj = 0(k2) 

We now put 

=l w/z~i _ ko22vin+l + kv2 02vfl+l + kp n+1 -kE!+l 

Wn!+2 /3 Wn+ in1 = wX1 + katpn+l - kEn+l. 

Equations (16a) and (16b) are clearly satisfied, and since 

Gp = grad p + 0(h2) = grad p + 0(k) 

we have 

P(k grad p) = 0(k2). 

On the other hand, it can always be assumed that div E = 0. (Since adding a 
gradient to E merely changes the definition of p; see e.g. [7]), and therefore by 
Theorem 2 
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lJkE- kPEII < \IClkIIDEII = 0(k2). 

These equations, together with Eq. (19) show that (16c) is satisfied, and the lemma 
is proved. 

We shall use wn as a comparison vector, i.e. we shall prove that IJun - wJlJ is 
small, and use (17) at the end of the argument to show that IJun - vnjj is small. The 
lemma assumes that v has continuous derivatives up to order five. Had we assumed 
the existence of only four continuous derivatives, the error term in (16c) would 
have been of order kh. This is sufficient for convergence; however, the proof becomes 
somewhat more complicated and we shall be content with the assumption of the 
lemma. 

We now introduce a second norm, the discrete maximum norm, defined for 
scalar functions o by 

?II40max = max 1?II 
zEfh 

and for vectors u by 

Ijujimax = max JjuiJlmax. 
i 

We have 
LEMMA 2. IJJlmax < h-12JJJJll, Ijulimax ? h-1"21JuJJ. 
The proof is obvious from the definitions. This lemma is crucial to the sequel 

since, as we shall see, it implies that if u converges to v with sufficient accuracy in 
the L2 norm, then u also converges to v in the maximum norm. 

LEMMA 3. Let IjunljJ.. ? K, and let k be small enough for the inequality kK2/4 < 1 
to hold. Equations (14a) and (14b) can then be uniquely solved for u+' /3, un+2/3. 

Proof. Multiplying (14a) by uin+113 we obtain 

|n+ '3 112 = - k (un+l /3, ulnD OJUll /3) 

+ k(u n+l /3, D+iD-u in+l /3) 

+ ( n u n+l /3) 

however, we have 

(U n+l/3 D+1D-lun+l/3) = -IID+U in+1/3112 

I (U I1/3, ulnDoiuin+l/3)1 < jjUjnjj Ilun+l/311 iDun+l/3 

On the other hand, Do, - 2(D+1 + D-1), therefore 

JjDo u !,+l 311 ' l(IID+lu!,n+l /3 
11 + JID _lJUn+1/311) = IID+lu !,+l/3 11 

and 

i k(u n+l /3, UlnDoui fn+l /3)1 < Kk UlU n+l/3 11 IID+ ui+l /3 11 

? kjlD+U in+ 11 312 + (K2k/4) IIuin+1 "3I1 2 

and hence 

(20) IlUin+1/31( _ _-K < IlU nl 
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The existence and uniqueness of Uin+'13 follow by the Fredholm alternative. The 
existence and uniqueness of Un+2/3 are established in the same way. 

LEMMA 4. Let lLunLlmax < K, and let k be small enough for the inequality kK2/2 < 1 
to hold; then, if k = 0(h2), we have 

(21) ||-n+1 _ w*n+'1 < (1 + kC2(K))HIun -_w + C3kh 2 

where C3 is a constant, and C2(K) is a constant whose magnitude depends on K. 
Proof. Subtracting (14a) from (16a) we obtain 

% n+L/3 + 
w 

1 n+1/3- -kunDol (fU+1/3 - wn+l/3\ -k(ln 
- +)Dolw +/3 

+ kD+iD-l(U in+l/3 - wzn+l/3) + O(k2) 

Multiplication by u' n+/3 
- w'n+1/3 and manipulations similar to those in the proof 

of Lemma 3 yield 

IUin+1 /3 - wn+1 /311(l - kK2) < Jlli - ni JJ(1 + kM1) + 0(k2) 

where 

M= maxmax max 19Wsn+1/31 
i O< t?T f 

Similarly, we obtain 

n+2/3 _ w n+2 
/31(1 - 

< 
- 

&+l/3 _ W+l i1/3 + kM2llJU - WIIJ + O(k )2 

where 

M2 = max max max 102Wi 
i O< t<T f 

and hence 

ln+2 /3 - W +2 /311 < (1 + kC2 (K) ) Ilue -wel + O(k2) 

where C2(K) depends on K. Finally 

ue+ _ wn+l = p(u+2/3 _ ew+2/3) + O(k2) 

and, therefore, using (11) 

In~ - wnj+1 < 11unn+2/3 _ Wn+2/311 + O(k2) 

< (1 + kC2(K)) Iu - well + C3kh2 

and the lemma is proved. 
Let u0 be the initial value of u, for use in Eqs. (14). We assume that 

(22) JIu0 - w011 = C4h2. 

This can be achieved for example by putting u0 = v0. Let W be defined by 

W = max max max 1wil. 
i O< t<T f 
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Let C be the largest of C3, C4 and C2(2W). Assume k is so small that kC < < 1 and 
that h is smaller than ho, where 

max (C, 1)ho(4-1)/2 = W 4, e < 1. 

Equation (22) and Lemma 2 then show that 

llU0 lmax < W + 2 EW < 2W. 

By Lemma 3 ul exists and by Lemma 4 we have ul - wll _ (1 + Ck) Ch2 + Ckh2. 
Therefore 

1111 Wliimax <?2j(1 + Ck)W + 2 kW-< KW < W JJlulJlmax < 2W, 2 ~~~2 
and we can evaluate u2. In general we have 

JJu+1 t-wn+1J < (1 + 0k)n+10h2 + [1 + (1 + Ok) + *. 
+ (1 + Ck) ]kh2 

< 2eC(n+l)kmax (C, 1)h2 

and 

(24) lldu+l _ -W+1llmax < WeCt e (t = (n + 1)k) . 

Let To be defined by exp CTo = 1/e and let T1 = min (T, To). Inequality (24) shows 
that for 0 < t < T1, llulla., < 2W and hence for 0 < nk < T1, u'+l exists and 

(25a) ffu"+1 - wn+l1f < 2 max (C, 1)eCth2 

as well as 

(25b) llun+l- Wn+l1lmax < 2 max (C, 1)eC th(4-1) /2. 

If T1 < T, i.e. if the inequalities (25) hold for a time interval shorter than the 
time interval for which the solution of the differential equations has five bounded 
derivatives and for which a numerical solution is required, the above process can 
be restarted at t = T1, to yield convergence for the whole finite interval 0 < t < T. 

Bearing in mind the definition of w and Eq. (17), we obtain the following 
theorem: 

THEOREM 3. Let Eqs. (1) and (2) have a periodic solution with continuous deriva- 
tives up to order five for 0 < t < T. Let k = 0(h2); if fu0 - w011', k and h are sufficiently 
small, Eqs. (14) have a unique solution which converges to the solution of (1) and (2) in 
both the L2 and maximum norms. The error in the L2 norm is of order h2; the error in the 
maximum norm is bounded by 0(h) in the two-dimensional case and by 0(V\h) in the 
three-dimensional case. 

Theorem 3 and its proof can be summarized as follows: Let un, wen be vector 
functions defined for z in Qh and for n such that 0 < nk < T1; introduce the "space- 
time" maximum and L2 norms 

|jujjmax, , = max |jmax 
O~nk<Tl 

IUlIT1 = max ||Unjj | 
O<nk<T, 

The equations 
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(I - kQi(&fl))un+l13 = un 

(I - kQ2=(C8))U"+2/3 = un+1 /3 

u+ = P(un+2t3 + kEn+l) 

u given, 

define a mapping X -> u. This mapping maps the maximum norm sphere 

JJ6)jJmax,Tj < 211wJJmaxTj 

into the L2 norm sphere 

11U - WfjTj -< ?IWfmaxTjh 

For 1ju0 - w0ff, k and h sufficiently small, this mapping has a unique fixed point 
which is the solution of (14) and lies close to v, the solution of (1) and (2). 

In our analysis we have neglected the effect of round-off error and of the er- 
rors arising from the possibly incomplete iterative evaluation of un+l = 

P(un+2/3 + kEn+l). It is obvious, however, that the analysis remains valid if the 
round-off errors are of order k2 and provided un+l is approximated by a vector 
(un+l)* such that D(un+l)* = 0(k2). Furthermore, in the dimensionless variables 
used in this paper the effect of the Reynolds number R on the error is not in evi- 
dence. Clearly C depends on R and increases as R increases; i.e. as R increases k and 
h have to be reduced for accuracy to be preserved. Finally, it is clear that the results 
of this section apply to certain other quasi-linear equations besides the Navier- 
Stokes equations, provided the boundary conditions are homogeneous. In this sense, 
our results generalize the work of M. Lees (see e.g. [8]), who considered equations 
with nonlinear terms of a simpler nature. 

The Mixed Initial Value-Boundary Value Problem. The main interest of methods 
such as those considered in this paper lies in their applicability to mixed initial 
value-boundary value problems. Schemes similar to (14) have been successfully 
applied by the author to a variety of such problems (see. e.g. [2]). The convergence 
proof however, becomes considerably more difficult in the presence of boundaries. 

Consider in particular the problem of solving Eqs. (1) and (2) in a domain Q, 
with v0 given and with the boundary condition 

(26) v=O on8&g. 

Operators D and G can be constructed so that the identities (4) and (5) are satisfied 
and Theorems 1 and 2 hold. D and G thus constructed employ centered differences 
except on AQ. On O9Q one-sided first-order differences are used whenever the use of 
centered differences would require functional values at points outside Q. The pro- 
jection P associated with G and D is orthogonal in the space of functions satisfying 
(26). The proofs of all these statements take into account the fact that the number 
of G-chains is 21 independently of the number of points in the mesh. 

Difficulties arise, however, when one approaches the convergence proof proper. 
It is clear from the proof of Lemma 1 of the last section that, were one to use 
schemes such as (14), one would have to impose on un+l/3, un+2/S inhomogeneous 
boundary conditions of the form 
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(27a) un+1/3 = kGirn on oAh 

(27b) un+ 23 = kG7rn on01 h 

where 7rn is the pressure computed at time t = nk. Such a procedure has indeed been 
followed in practice. Unfortunately, in the presence of inhomogeneous boundary 
conditions the author has not been able to establish the analogues of Lemmas 3 and 
4. Moreover, the construction of w in Lemma 1 does not carry over to the present 
problem, since w, as given in the last section, does not satisfy the imposed boundary 
conditions. Both difficulties stem from the fact that in the presence of boundaries 
the operators P and V2 (linear part of a) do not commute. This is reminiscent of 
other situations in numerical analysis where the noncommutativity of certain 
operators hinders the analysis of fractional-step methods without detracting from 
their practical usefulness. 

It is nevertheless possible to develop schemes for which convergence in the L2 
norm can be established. As an example, consider the following scheme with two 
fractional steps: 

(28a) -k= - X {2(S+ + S2)(u Dodujnl/2) 

+ D+D#Uin+l/2} inh ?0 

(28b) ue+1/2 = 0 on Oh 

(28c) e+1 = P(ue+1 2 + kEn+'l) 

It is clear the homogeneous boundary condition (28b) contains an error of order k. 
However, since the number of mesh-points on the boundary is 0(h) times the num- 
ber of mesh-points in the whole domain, some accuracy in the L2 norm will be pre- 
served. We shall indicate how one can establish that in the L2 norm the solution of 
(28) converges to the solution of the Navier-Stokes equations which satisfies the 
correct boundary conditions. un, as given by (28), therefore assumes the imposed 
boundary conditions in a weak sense. It is clear that the estimates we shall derive 
will not do justice to the accuracy of the method. 

One can verify the following identity 

(fy E + (S+# + Sl) (un Dof)) = 0 

which holds for all f provided Du = 0 in Oh and u = 0 on the boundary. This of 
course is a discrete analogue of the identity Jzffuj3afdx = 0, which holds whenever 
div u = 0 in Q and u = 0 on the boundary. Using this identity we can establish the 
following inequalities: 

I1un+1/211 < flunll 

and 

I1un+1I1 _ f1unil + kJJJPEn+1JJ 
n+1 

- Iull + k E JJPE'11 
i=O 

If we assume that Eqs. (1) and (2) have a solution v with continuous derivatives 
up to order four, this inequality can be used to show that if k = 0(h2) 
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(29) Iu -v'I I< constant a\h, O <nk <T. 

For two-dimensional problems one can replace (28a) by an explicit scheme (which 
does not require intermediate boundary data such as (28b)). For small enough 
Reynolds number and provided k < h2/4 one can then derive an estimate similar to 
(29). Furthermore, the scheme (28) can be modified so that a convergence proof of 
the Krzywicki-Ladyzhenskaya type becomes possible. 

Since neither the scheme (28) nor its modifications are of any particular practical 
significance, details and proofs are omitted. (It should be pointed out however, 
that the system of linear equations (28a) can be solved by successive relaxation, 
provided the relaxation factor w is sufficiently small. For proof, see [9].) 

In ending, the author would like to make some comments on the preceding 
proofs. First of all, he would like to state his belief that the value of a scheme such 
as (14) lies in its practical usefulness, not in the possible existence of a convergence 
proof. The value of the convergence proofs lies in the fact that they contribute to 
the understanding of the numerical processes performed on the computer. 

The proof of this paper requires the existence of four or five continuous deriva- 
tives of v and p. Furthermore, the error increases as the bounds on the required 
derivatives increase. This situation is inherent in the very nature of difference 
schemes; as a result, it is highly improbable that a flow containing a strong cascade 
process, i.e. a process in which energy is transferred from large to small eddies, 
can be adequately described by a difference method, for indeed, such flows are 
characterized by rapid increase in the higher derivatives. This of course excludes 
turbulence from the range of application of difference methods. 

Finally, it has been claimed by several authors that the nonlinear terms in the 
Navier-Stokes equations must always be cast in "conservation law" form, i.e. in a 
form which implies the existence of identities for the momentum similar in appear- 
ance to those which hold for the solutions of the differential equations. The author 
knows of no good reason for following this procedure in problems with a smooth 
solution and has not endeavored to do so. 
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